Warren Brook/Cold River, Alstead October 2005

Slayton Hill Road culvert, Lebanon July 2013

New Hampshire House Bill 648

Chapter 179 Laws of 2007

Comprehensive Flood Management Study Commission

Final Report

September 2008

HB 648 Comprehensive Flood Management Study Commission: Key FindingNeed: Ensure that bridges and culverts are adequately sized.

"DOT, DES and Fish & Game with input by the Nature Conservancy, should be tasked to develop the procedure and database for a standard culvert assessment data collection."

New Hampshire Stream Crossing **Assessment** Initiative **State Stream Crossing Steering Team** NHDES New Hampshire Geological Survey Wetlands Bureau **Coastal Program** NHDOT NH Fish & Game NH HSEM

New Hampshire Stream Crossing Assessment Initiative

Statewide Asset Data Exchange System (SADES)

New Hampshire Stream Crossing Initiative

<u>Field Manual</u>

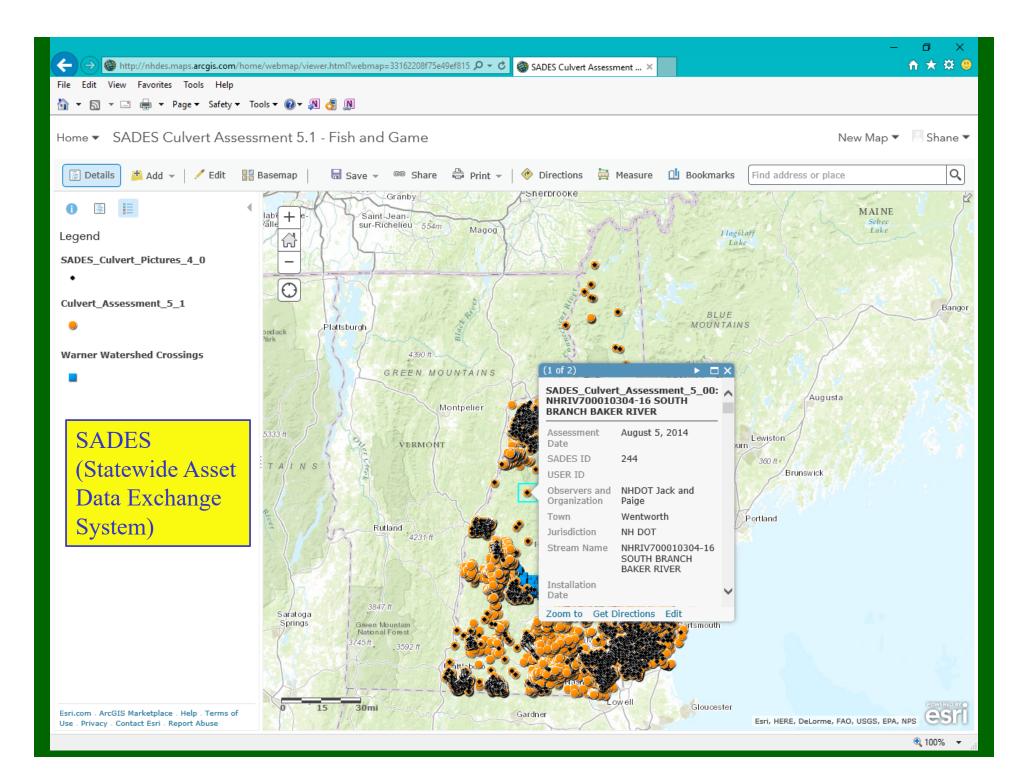
In Partnership With:

NH Department of Environmental Services NH Department of Transportation NH Fish and Game Department NH Division of Homeland Security and Emergency Management NH Regional Planning Commissions UNH Technology Transfer Center

Version: 6.0

SADES Stream Crossing Assessment 6.0

Guide to Parameters Collected at Each Crossing Type


Once CROSSING TYPE has been determined (based on upstream waterbody type), use the table below, along with the icons next to each parameter, to guide field data collection.

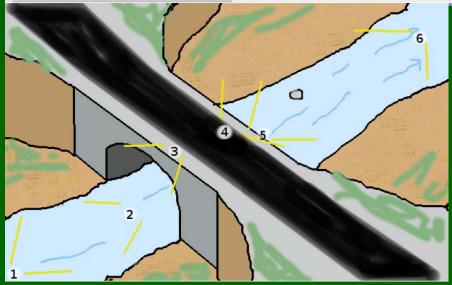
		Crossing Type				
Parameter	Stream	Wetland or Pond	Drainage			
1.) Assessment Date	X	Х	X			
4.) User ID	X	Х	X			
5.) Observers	X	Х	X			
6.) Organization	X	Х	Х			
7.) Project Name	X	Х	X			
10.) Road Name - Field	X	X	X			
12.) Structure Skewed to Roadway	X	X	X			
13.) If Channel Avulses, Stream Will	X	Х				
14.) Estimated Distance Avulsion Would Follow Road (ft)	X	X				
15.) Waterbody - Upstream	X	Х	X			
16.) Crossing Type	X	Х	Х			
17.) Angle of Stream Flow Approaching Structure	X					
18.) Floodplain Filled by Roadway Approaches	X					
19.) Number of Structures at Crossing	X	Х				
20.) Overflow Structures Present	X	X				
21.) Structure Type	X	Х	X			
22.) Structure Material	X	Х	X			
23.) Inlet Type	X					
24.) Inlet Wingwall Angle - Stream Left	X					
25.) Inlet Wingwall Angle - Stream Right	X					
26.) Upstream - Width (A) (ft)	X	Х	X			
27.) Upstream - Open Height (B) (ft)	X	Х	Х			
28.) Upstream - Wetted Width-Wall Rise (C) (ft)	X	Х	Х			
29.) Upstream - Total Height (D) (ft)	X	Х	X			
30.) Structure Opening Partially Obstructed By	X	Х				

Training Program

- 2 standard field sites
- Conduct training each spring for that season's collectors – have done this for 6 years
- Go through every field on form
- Also have a classroom PowerPoint version to supplement the field training as needed
- Perform field visits with collectors to provide guidance and feedback

Quality Control Review Process

NHDOT - Notepad


This report was created on 2015-09-05 16:39:41.294000 By Jeremy.D.Nicoletti From the file 5:/CO-Geology/GeoHazards/Floods/Databases - Stream Crossings/SADES QA/Stream_Crossing_QA/Downloads_By_Date/SADES_CSV_Exports/20150831_Never_Reviewed.csv

DLS '2,200' was flagged for rejection c review level for this structure was "New" r SADES ID '2,206', which was collected by 'NW DOT Survey', the following was determined: memors:

-Control alone was little weight of 0.6 weight will weight determined? The clifter issues a compared with the channel lists i. ". Little weight weight weight weight weight and the channel issues i.". The clifter issues a compared with the channel lists is it weight weight weight and the channel issues i.". The clifter issues is compared with the channel lists is it weight weight and the channel issues i.". The clifter issues is compared with the channel lists is it weight and the channel issues i.". The clifter issues is compared with the channel lists is it weight and the channel is the channel is first the clifter issues is the channel lists is it. The clifter is it. It is the channel is the ch

Di upstreams Di upstreams terhody is described as a(n) . Scour is undernining the upstream '. Scour is undernining the upstream '. There is a 'Distream Store book No Beaver Dans were observed upstream. There is a 'Ded upstream utin ' bonk observed system described upstream. Upstream bed deposition is '. upstream bed deposition is '. upstream vegetation is on the left and on the right.

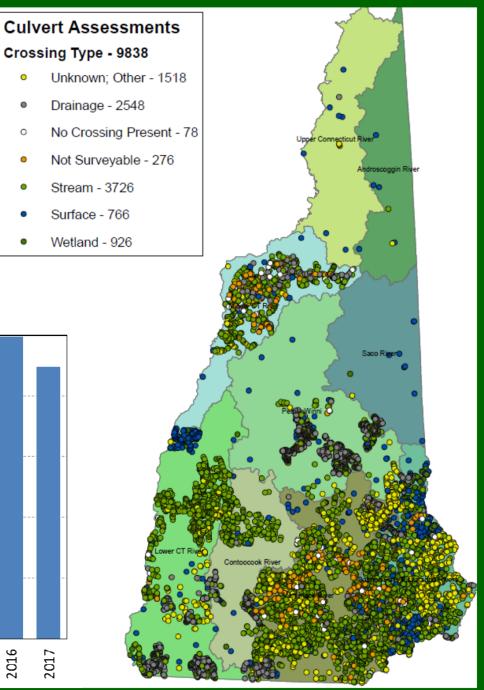
C: Demotsrami The demotsrami There is a 'bed downstream. We also do down the observed downstream. Where is a 'port observed downstream. There is no pool downgtream. There is no pool downgtream. There is no pool downgtream. There is a 'potablic conductions' is downstream, with a slope percent of '0' between the control and outlet downstream bed deposition is ' Downs

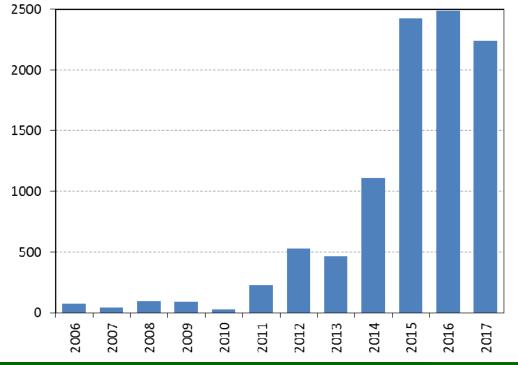
- 6 photos per crossing
- Cross-reference of photos with data
- Issues/comments to collectors
- Work in turn to address comments and complete process to enable running of geomorphic and AOP passage tools
- Streamworks-TU hydraulic model

New Hampshire Stream Crossing Assessment Initiative

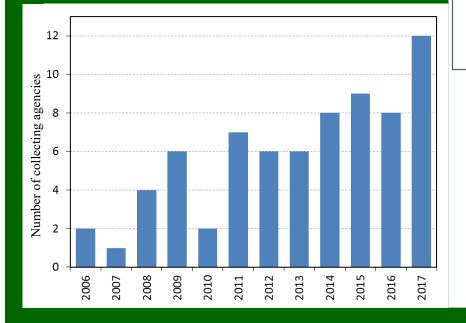
• Assessment totals:

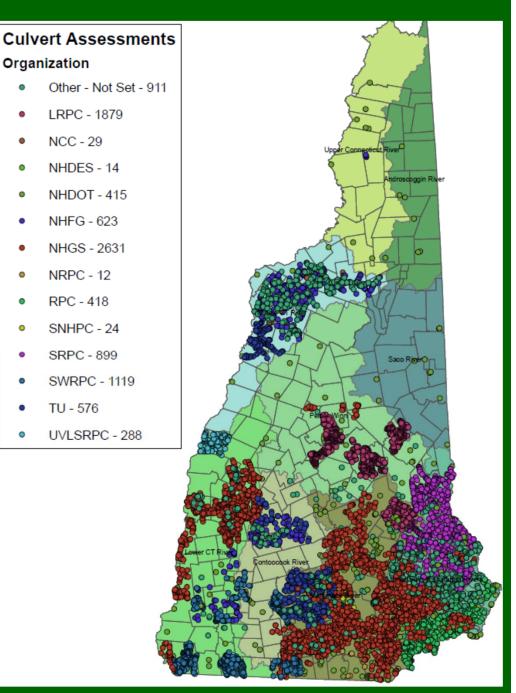
- 2017 - 1842 Assessments performed


- Crossing Types
 - 559 Streams
 - 142 Wetlands
 - 33 Surface Waters (lakes, ponds, etc.)
 - 884 Drainages (catch basins, road side drainages, etc.)
 - 164 Not surveyable (private roads, safety concerns, trail crossings, etc.)
 - 39 No Crossing Present (NHD flowline, roads intersect was incorrect)


New Hampshire Stream Crossing Assessment Initiative

0


0


0

New Hampshire Stream Crossing Assessment Initiative

Rollins Brook at French Road Epping

<50% bankfull (channel) width

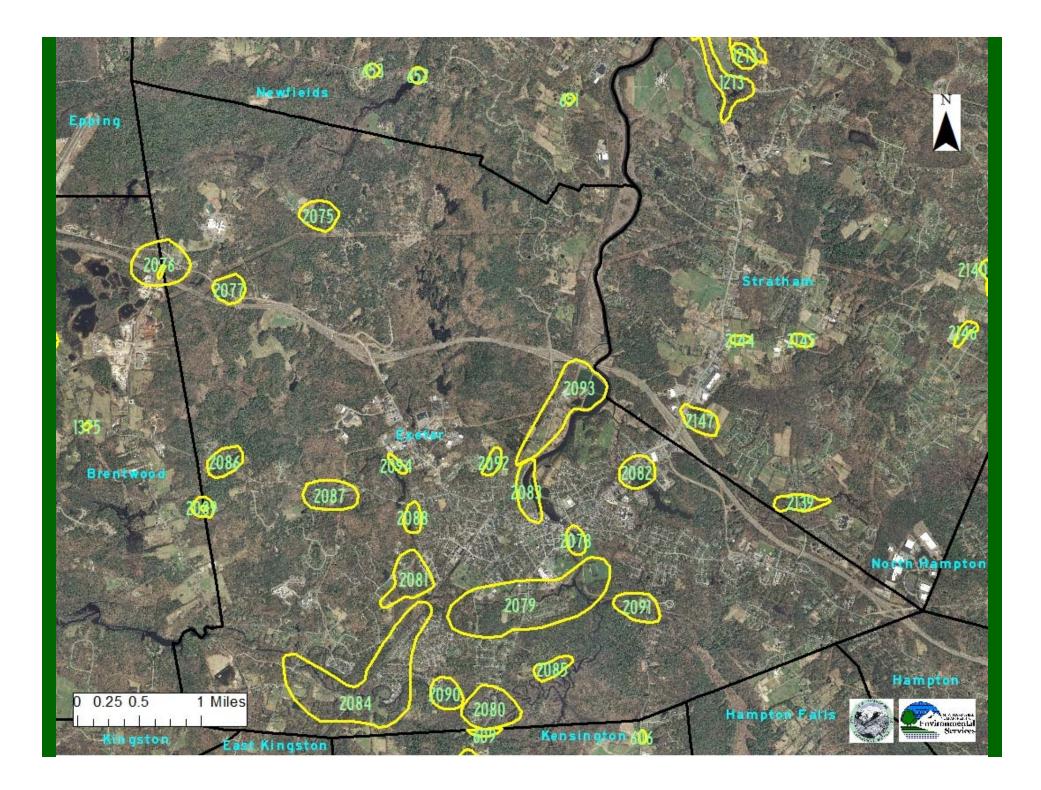
Sediment continuity

Erosion and armoring

AOP and GC

- Aquatic Organism Passage
 - A ranking that predicts a crossing's overall ability to pass aquatic organisms (particularly fish).
- Geomorphic Compatibility
 - A rank that predicts the long-term compatibility of a culvert with river form and sediment transport processes.

AOP and GC


Geomorphic	AOP	Other
Number of culverts		Crossing type
Upstream dimensions	Culvert outlet invert type	Material
Upstream bankfull width	Outlet drop (ft)	Condition
Angle of stream flow approaching	Downstream pool present	Water depth
Culvert slope compared with channel slope	Downstream pool entrance depth	Upstream waterbody
Upstream bed deposition	Water depth in culvert at outlet (ft)	Downstream waterbody
Upstream deposits taller than 0.5 bankfull height	Number of culverts at crossing	Outlet height
Steeper Segment within 1/3 mile upstream	Structure opening partially obstructed	Beaver dam upstream
Downstream bed scour undermining the structure	Screening at inlet	Beaver dam downstream
Downstream bank heights are significantly taller than upstream banks	Sediment throughout the structure	
Upstream bank erosion		
Downstream bank erosion		
Upstream bank armoring		
Downstream bank armoring		

Geomorphic Compatibility

Category Name	Screen Score	Threshold Conditions	Description of structure-channel geomorphic compatibility
Fully compatible	20 <gc<u><25</gc<u>	n/a	Structure fully compatible with natural channel form and process. There is a low risk of failure. No replacement anticipated over the lifetime of the structure. A similar structure is recommended when replacement is needed.
Mostly compatible	15 <gc<u><20</gc<u>	n/a	Structure mostly compatible with current channel form and process. There is a low risk of failure. No replacement anticipated over the lifetime of the structure. Minor design adjustments recommended when replacement is needed to make fully compatible.
Partially compatible	10 <gc<u><15</gc<u>	n/a	Structure compatible with either current form or process, but not both. Compatibility likely short term. There is a moderate risk of structure failure and replacement may be needed. Re-design suggested to improve geomorphic compatibility.
Mostly incompatible	5 <gc<u><10</gc<u>	% Bankfull Width + Approach Angle scores ≤ 2	Structure mostly incompatible with current form and process, with a moderate to high risk of structure failure. Re-design and replacement planning should be initiated to improve geomorphic compatibility.
Fully incompatible	0 <u>≤</u> GC <u>≤</u> 5	% Bankfull Width + Approach Angle scores ≤ 2 AND Sediment Continuity + Erosion and Armoring scores ≤ 2	Structure fully incompatible with channel and high risk of failure. Re-design and replacement should be performed as soon as possible to improve geomorphic compatibility.

Aquatic Organism Passage (AOP) Compatibility

VT Aquatic Organism Passage Coarse Screen	Full AOP	Reduced AOP	No AOP					
Updated 2/25/2008	for all aquatic organisms	for all aquatic organisms	organisr	aquatic ns except almonids	organism	for all aquatic organisms including adult salmonids		
AOP Function Variables / Values	Green (if all are true)	Gray (if any are true)	Orange		Red			
Culvert outlet invert type	at grade OR backwatered	cascade	free fall AND		free fall AND			
Outlet drop (ft)	= 0		> 0 , < 1 ft OR		≥1 ft OR			
Downstream pool present			= yes (= yes AND		= no OR	(= yes AND		
Downstream pool entrance depth / outlet drop			n/m	<u>></u> 1)	n/a	< 1) OR		
Water depth in culvert at outlet (ft)					< 0.3 ft			
Number of culverts at crossing	1	> 1						
Structure opening partially obstructed	= none	≠ none						
Sediment throughout structure	yes	no						

OBJECTID	Town	Source	Flooding_D	Frequency	Date	RoodType	FloodPeriod	Impact	CrossType	Crossissue		Shape_Length	Shape_Area
2075	Exeter	Exeter HMP 2012	None - Need to verify	Unknown	None	Road flood	Past/potential flood	Unknown	Culvert	Unknown	Beech Hill Rd at Beech Hill Brook	4641.301341	1589336.86
2076	Exeter	Exeter HMP 2012	Identified by town as area of chronic reoccurring flooding or high potential for future flooding.	Unknown	None	Road flood	Past/potential flood	Unknown	Bridge	Unknown	Pine Rd at the Exeter Town Line	2029 293721	1 3787768.16
							Past/potential		Unknown		Epping Rd (Route 101) near Old		
2077	Exeter	Exeter HMP 2012	None - Need to verify Identified by town as area of chronic reoccurring flooding or high potential for future	Unknown	None	Road flood	flood Past/potential	Unknown	type	Unknown	Route 101 Franklin and River St	4137.431147	1282105.5
2078	Exeter	Exeter HMP 2012	fooding.	Unknown	None	Road flood	flood	Unknown	Bridge	Unknown	Neighborhoods	3358.338072	808703.17
2079	Exeter	Exeter HMP 2012	Identified by town as area of chronic reoccurring flooding or high potential for future flooding.	Unknown	None	Road flood	Past/potential flood	Unknown	Bridge	Unknown	Court Street (NH Route 108) at the intersection o*	16858.75181	13187370
2060	Exeter	Exeter HMP 2012	Identified by town as area of chronic reoccurring flooding or high potential for future flooding.	Unknown	None	Road flood	Past/potential flood	Unknown		Unknown	Court Street (NH Route 108) at the Exeter/Kensing*	6863,560901	
		Exeter HMP 2012	Identified by town as area of chronic reoccurring flooding or high potential for future flooding.	Unknown	None	Road flood	Past/potential flood	Unknown	Bridge	Unknown	Kingston Road (NH Route 111) at Brickyard Pond to*	7491.888912	
			Identified by town as area of chronic reoccurring flooding or high potential for future				Past/potential				Portsmouth Avenue (NH Route		
2082	Exeter	Exeter HMP 2012	fooding. Vulnerable to tidal storm surge, identified by town as area of chronic reoccurring flooding	Unknown	None	Road flood	flood Past/potential	Unknown	Culvert	Unknown	108) abutting the Tow*	4666.474027	1672279.8
2083	Exeter	Exeter HMP 2012	or high potential for future flooding.	Unknown	None	Road flood	flood	Unknown	Culvert	Unknown	Swasey Parkways	6333.173301	1941412.6
2084	Exeter	Exeter HMP 2012	Identified by town as area of chronic reoccurring flooding or high potential for future flooding.	Unknown	None	Road flood	Past/potential flood	Unknown	Culvert	Unknown	Powder Mill Road at the railroad crossing the Exe*	20744.02272	14372125
2085	Exeter	Exeter HMP 2012	Identified by town as area of chronic reoccurring flooding or high potential for future flooding.	Unknown	None	Road flood	Past/potential flood	Unknown	No	None	Lary Ln neighborhood	4259.695558	982827.37
2086	Exeter	Exeter HMP 2012	Identified by town as area of chronic reoccurring flooding or high potential for future flooding.	Unknown	None	Road flood	Past/potential flood	Unknown	No	None	Brentwood Rd (NH Route 111A) west of the intersec*	4557.401044	4 1457164.8
2087	Exeter	Exeter HMP 2012	Identified by town as area of chronic reoccurring flooding or high potential for future flooding.	Unknown	None	Road flood	Past/potential flood	Unknown	No	None	Brentwood Rd (NH Route 111A) east of the intersec*	6070.323918	2475772.7
2088	Exeter	Exeter HMP 2012	Identified by town as area of chronic reoccurring flooding or high potential for future flooding.	Unknown	None	Road flood	Past/potential flood	Unknown	No	None	Brentwood Rd (NH Route 111A) at the intersection *	3391.926162	2 764337.84
2089	Exeter	Exeter HMP 2012	None - Need to verify	Unknown	None	Road flood	Past/potential flood	Unknown	Culvert	Unknown	Michael Bennet Rd	2877.365709	624359.32
2090	Exeter	Exeter HMP 2012	Vulnerability to flooding in low-lying areas adjacent to the Exeter River	Unknown	None	Road flood	Past/potential flood	Unknown	Bridge	Unknown	King Arthur Ct and Linden St	4389.586359	1463592.6
2091	Exeter	Exeter HMP 2012	None - Need to verify	Unknown	None	Road flood	Past/potential flood	Unknown	Culvert	Unknown	Gliman Ln and Drinkwater Rd	5255.913772	1843227.5
2092	Exeter	Exeter HMP 2012	None - Need to verify	Unknown	None	Road flood	Past/potential flood	Unknown	Unknown type	Unknown	Ouk St Ext	3179.05847	594906.24
2093	Exeter	Exeter HMP 2012	Vulnerable to flooding from Squamscott River	Unknown	None	Road flood	Past/potential flood	Unknown	Unknown type	Unknown	Newfields Rd (Route 85)	12623.99964	6295376.6
2094	Exeter	Exeter HMP 2012	Vulnerable to flooding in low-lying areas adjacent to the Little River	Unknown	None	Road flood	Past/potential flood	Unknown	No	None	Colcord Pond Rd, Allard St	2480.414945	297520.44